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Abstract— Oil and gas refineries can be a dangerous envi-
ronment for numerous reasons, including heat, toxic gasses,
and unexpected catastrophic failures. In order to augment
how human operators interact with this environment, a mobile
robotic platform is developed. This paper focuses on the use of
WiFi for communicating with and localizing the robot. More
specifically, algorithms are developed and tested to minimize the
total number of WiFi access points (APs) and their locations
in any given environment while taking into consideration the
throughput requirements and the need to ensure every location
in the region can reach at least k APs. When multiple WiFi
APs are close together, there is a potential for interference.
A graph-coloring heuristic is used to determine AP channel
allocation. In addition, WiFi fingerprinting based localization
is developed. All the algorithms implemented are tested in
real world scenarios with the robot developed and results are
promising.

I. INTRODUCTION
Removing humans from inhospitable environments is of-

ten desirable. For instance, in the oil and gas industry, during
inspection, maintenance, or repair of facilities in a refin-
ery, people may be exposed to severely high temperatures
(+50◦C) for an extended period of time, to toxic gasses
including methane and H2S, and to unexpected catastrophic
failures. One way to remove human exposure from these
types of situations is to instrument an oil refinery with a
wireless sensor network [1], which attaches a wireless sensor
on every gauge and valve. Unfortunately, this approach is
expensive and labor-intensive, let alone wireless sensors are
failure prone. Hence, maintenance of the network and reli-
ably collecting data from the network are extremely challeng-
ing. We, therefore, resort to a different approach that aims to
augment how the human operators interface with the physical
world. A mobile robotic platform is a rational analog to
a physical human - it can move through an environment
either autonomously or through tele-operation while sensing
its surroundings with an array of sensors. However, further
constraints are applied when introducing physical systems
into an oil and gas environment. All devices deployed must
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meet the specified standards set by the industry. A detailed
explanation of these standards applied to a mobile robot are
stated in [2].

In our interdisciplinary project that aims to automate oil
and gas processes using a mobile robot, we have built Blaster
(Fig. 1), a mobile robot capable of both tele-operation and
autonomous control. Blaster is capable of path planning,
path tracking, obstacle avoidance, and auto inspection au-
tonomously. A network camera, a thermal imaging camera,
an acoustic sensor for leak detection, and a methane gas
sniffer are mounted on the end of Blaster’s 5 degree-of-
freedom arm. It is capable of reaching a height of 2m
when fully extended. Communication between Blaster and
the control station occurs over WiFi. For more details on
the design of the system, interested readers may refer to our
paper [3].

Fig. 1. A refinery inspection mobile robot

Using an autonomous robotic system for an offshore
oil and gas refinery has been proposed before [2], [4].
However, no detailed studies on WiFi communication and
localization issues have been reported. In this paper, we focus
on the WiFi aspects when using a mobile robotic platform
in an oil refinery. More specifically, we consider the two
problems: WiFi communication and localization. First, while
the robot is mobile, an operator must be able to communicate
with it to receive sensor data collected from the refinery
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(e.g., images and acoustic data) as well as send it various
commands that either manipulate the robot or the arm,
request certain specific information, or ask it to move in a
certain way; however, most refineries lack a wireless network
infrastructure. Therefore, WiFi access points (APs) must be
strategically placed throughout an environment to minimize
the number of units required to achieve full coverage needed
for communication. Second, in order for a robotic system to
be autonomous, it must have an accurate understanding of
its location. Since an oil refinery often is comprised of tall
structures made of steel, GPS may not always be available,
WiFi based localization becomes essential. It complements
localization methods using other sensors built in a robotic
system.

The work presented in this paper makes the following
contributions.

• We have conducted thorough studies of WiFi signal
propagation properties in both indoor and outdoor envi-
ronments, which forms the basis for WiFi AP deploy-
ment and communication.

• We have implemented an AP placement algorithm to
achieve single coverage (i.e., every point in a site can
communicate with at least one WiFi AP).

• For better reliability and localization, we have imple-
mented a k-coverage AP placement algorithm (i.e.,
every point in a site can communicate with at least k
WiFi APs), where k > 1.

• We have implemented a channel allocation algorithm to
minimize interference from neighboring APs.

• We have implemented a WiFi localization technique and
tested it on the mobile robotic platform in both indoor
and outdoor environments.

The rest of the paper is organized as follows. Section II
discusses related work regarding wireless communication in
an oil refinery. A WiFi AP placement technique is discussed
in Section III. A WiFi localization technique is discussed in
Section IV and implemented and tested on an autonomous
robotic system. Finally, Section V presents concluding re-
marks.

II. RELATED WORK

In this section, we only discuss related work in providing
wireless communication in an oil refinery. We defer the
discussion of the work related to specific aspects of WiFi
communication and localization to later sections. Previous
work [1] proposes to use wireless sensor networks (WSNs)
for remote monitoring to detect leaks of harmful by-products
of oil refineries. While WSNs are capable of being equipped
with an array of sensors, the major deficiency of WSNs is
battery life as well as their failure prone nature. A robotic
mobile platform is developed [4], [2] to provide secure and
reliable two-way wireless communication at a lower cost
and less maintenance than a WSN. In [4], localization is
performed through a form of Simultaneous Localization and
Mapping (SLAM). In [2], localization is performed through
fusing the inertial navigation system (INS) and infrared
sensor (IR) with reflective tapes to characterize specific

shaped objects. Communication is established through WiFi
to an operator control station or through Bluetooth to a
nearby handheld device. While both systems use WiFi for
communication and localization, none of them provide any
details. In contrast, our work introduces an autonomous
system capable of localizing to a sub-meter level in indoor
or outdoor environments. We provide detailed discussion of
the technical details and extensive performance studies.

III. WIFI COMMUNICATION

Two types of data are communicated between the robot
and the control station. Control information has the higher
priority as it informs the robot how to act and react, i.e.:
whether it is direct movement commands through tele-
operation or more general commands such as informing the
robot of a new destination for inspection. Tele-operation
and emergency stop are two operations that require real-
time communication and must be executed by the robot
regardless of the state of sensor information. For example,
if the operator receives a report describing low pressure in
a tank, the robot should be able to drive upstream of the
tank, begin to transmit acoustic information, and then drive
along the pipe to determine if there is a visible leak. If
the communication between the robot and control station
times out, the robot halts - this is to ensure safety of the
surrounding environment and of the robot itself. Therefore,
communication between the systems must be reliable.

Since an oil refinery typically does not have WiFi in-
frastructure available, we need to determine the minimum
number of WiFi APs needed and where to deploy them so
that the entire region is covered. When multiple APs are lo-
cated close to each other, we need to determine how different
channels should be used by each AP to avoid interference.
The following subsections describe the algorithms used for
these purposes.

A. AP Placement

When determining placement of APs in a given envi-
ronment, the required minimum throughput that supports
both control information and sensor information must be
maintained in order to ensure communication at every lo-
cation in the environment. This requires that at any time, the
mobile robot be in communication range of at least one AP.
While a dense network dispersed through an environment
can achieve this, it is costly. Therefore, the single-coverage
WiFi AP placement problem is to determine the minimum
number of APs and their locations so that each location in
the environment can reach at least one AP, given a region
and throughput needs specified by the application.

The single-coverage WiFi placement problem is NP-
hard [5] and belongs to a large class of problems known
as “Coverage Problems”. A classical example of which is
the “Art Gallery Problem” [6]. Several heuristics have been
proposed before [7], [8]. We have implemented an algorithm
based on [7]. Fig. 2 shows the algorithm flow. Environment
information, consisting of the dimensions of a given area
and a list of object locations, and a minimum throughput
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requirement are passed into the algorithm. A 2D grid-system
map is then generated consisting of object and non-object
nodes, where an object node is defined as a node whose
location correlates to an occupied space such as a wall. Each
non-object node is considered a candidate location for AP
placement. The algorithm considers every candidate location
during each iteration by mapping the coverage of the APs
already chosen as well as the propagation of the new AP.
The signal of the new AP is propagated until it reaches the
cut-off distance or an object-node is encountered. This hard
encounter cut-off is used because in an oil and gas refinery,
the objects that are encountered are typically large and made
of steel. The best AP for that iteration is then chosen as the
one that provides the minimum average distance between all
uncovered nodes. That AP is then added to the list of best
APs. Once all nodes have been covered, the list of best AP
locations is returned.

Environment
Information

Throughput
Requirement of

Entire Region

1: Create pool of candidate access points

2: Determine best access point from pool

3: Switch on APbest and add to set of access points

4: Coverage 
requirement 

met?

5: Output list of best access points

Yes

xNoX

Fig. 2. Algorithm flow of access point placement algorithm

In this algorithm, a key step is to predict the signal
propagation of a potential AP. In order to have a clear picture
on how WiFi signal propagates in a specific environment, we
have conducted thorough studies in both indoor and outdoor
environments. Note that, similar studies need to be conducted
in a target environment. In the following, we discuss the
methodologies taken and results obtained in our studies.

An oil and gas refinery can be thought of as a combination
of both an indoor and an outdoor environment due to the
nature of the layout, so a series of studies were conducted to
understand how WiFi signals propagate in both indoor and
outdoor environments. Specifically, we study the impact of
distance, transmission power, or speed of the mobile robot
on the upper and lower bounds of received signal strength
indicator (RSSI), bandwidth, and packet delivery ratio. Fig. 3
depicts the impact of distance and transmission power on the
received signal strength and bandwidth in the Brown Hall
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Fig. 3. Received signal strength and bandwidth vs distance at three
transmission powers in an indoor environment

of the Colorado School of Mines (CSM) campus. Similar
trends are observed in an outdoor environment: a soccer field
at CSM. Figures are omitted due to page limitations. These
results show that in order to provide a network that is capable
of supporting a 10 Mbps throughput, a RSSI of −70 dbm
(80 m) must be used. We will use this as the cut-off distance.

We have tuned the classic Log-Distance Path-Loss Model
(1) to fit our experimental data (Fig. 4).

PLd[dbm] = PL0[dbm] + 10 ∗ n ∗ log(d/d0), (1)

where PL[dbm] is the calculated signal strength, PL0[dbm]
is the relative signal strength at a distance of d0 (4.572 m
or 15 ft), n is the log-loss exponent (1.8), and d is the given
distance. Therefore, in the AP placement algorithm, we use
this propagation model to determine signal propagation of
each potential AP.
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Fig. 4. Received signal strength vs distance for both indoor and outdoor
environments with the log-distance path-loss propagation model results.

We have tested the single-coverage AP placement algo-
rithm at Colorado School of Mines 3rd floor Brown Building
(Fig. 5(a & b)). The building consists of a large hallway,
approximately 3 m by 45 m with numerous classrooms and
an open area in the center. The building material is mostly
sheetrock. The algorithm created a 72 by 10 grid-point map
using a grid-length of 0.9144 m (3 ft), which resulted in the
requirement of 6 APs Table I. Fig. 5(a) shows the position
of AP placement (Xi), where i is the placement order.

This single-coverage deployment ensure that at any lo-
cation in the given environment, communication between
the robotic mobile system and the operator control station
is possible. In order to better support WiFi localization, a
coverage greater than one is required. In other words, we
need to determine how to cover an area with minimal number
of APs so that each point in the area is covered by at least
k APs, where k > 1.

This is a very different problem from existing work on
placement of multiple WiFi APs whose focus is typically
for handling a large number of mobile clients or nonuni-
form client load. Techniques such as cell dimensioning and
dynamic load balancing are developed [9]. However, the
k-coverage AP placement problem bears certain similarity
with k-coverage sensor deployment in WSNs, which has
been studied extensively in the community [10]. The dif-
ference between the two problems is that in WSNs, multi-
hop communication is often needed and also sensors may
have different sleep schedule. We, hence, adapted a greedy
approach from [11] and [12] that attempts to maximize the
net coverage (also called K-benefit) introduced by the new
AP or sensor. The K-Benefit of a new AP P is defined as:
(V (M ∪ P,K)− V (M,K)) / (|M ∪ P | − |M |), where M
is the existing AP set.

V (S,K) =
∑
eεE

(
max

(
K,
∑
sεS

(δ (e, s))

))
, (2)

where S is the set of AP candidate locations, K is the
required k-value, E is the region of interest, and δ(e, s) is 1
if node e is covered by AP s. The algorithm shown in Fig. 2
for single coverage is modified in the following ways:

1) Step 2: the algorithm instead distributes the signal
of the candidate AP and maximizes the count of the
newly covered nodes that are under the k-covered
requirement for every candidate location as seen in (2).

2) Step 3: The candidate AP that produces the largest K-
Benefit is then added to the set of APs that cover the
region - its coverage is added to the final map.

3) Step 4: The algorithm continues to iterate until all
locations have been at least k-covered.

Fig. 5(b) shows the coverage count for k = 2, where Xi
marks the location of an AP and i is the placement order.
This configuration is repeated k times.

B. Channel Allocation

In the previous section, we defined a heuristic to determine
the placement of APs for single coverage as well as k-
coverage. Because of the nature of wireless signal propa-
gation, APs will interfere with other neighboring APs. In
order to prevent them from interfering, neighboring APs
must be assigned to different channels. WiFi operates in the
frequency range of 2.4 GHz to 2.485 GHz. Within this 85
MHz band, WiFi defines 11 partially overlapping channels.
Any two channels are non-overlapping if and only if they are
separated by four or more channels. In particular, the set of
channels 1, 6, and 11 is the only set of three non-overlapping
channels [13]. Therefore, we need to assign the minimum
number of channels for all the APs deployed while making
sure no two nearby APs (i.e., potentially may interfere with
each other) are assigned to the same channel.

The channel allocation problem can be formulated into the
classic NP-hard graph coloring problem: each AP represents
a node in an interference graph and if the coverage of two
APs overlap, a bi-directional edge is added between the two
nodes. We borrow a heuristic from [14] that attempts to
color the most nodes in one iteration before considering the
next color. During each iteration, the uncolored node with
the smallest index is chosen and colored with the current
iteration color. Interference is then calculated for all 2+ hop
nodes of the current node, where if a 2+ hop node is a child
of another 2+ hop node, the interference count of those nodes
are increased by one. Once the interference for every 2+
hop node has been calculated, the node with the smallest
interference count is colored the current iteration color and
children of the newly colored node are removed from the 2+
hop list. Once this list is empty, the heuristic moves onto the
next color iteration. The heuristic continues to iterate until
all nodes have been colored.
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Fig. 5. AP placement results for CSM’s West Brown Building 3rd floor

We have tested the channel allocation algorithm on the AP
placement determined in Fig. 5(a), 4 channels are allocated
as seen in Table I.

TABLE I
CHANNEL ALLOCATION RESULTS FOR CSM BROWN BUILDING, 3rd

FLOOR HALLWAY.

AP 0 1 2 3 4 5
Location (x, y) (5, 5) (24, 6) (67, 6) (52, 5) (36, 6) (52, 5)

Color 0 1 0 2 1 3

IV. WIFI LOCALIZATION

Now that the WiFi infrastructure has been deployed, we
can use it for localization. Indoor WiFi localization has
been studied extensively - [15] provides a survey of wireless
indoor positioning techniques. When performing localization
through a WiFi network, two approaches are generally taken:
signal propagation modeling and WiFi fingerprinting [16].
Research shows that the signal propagation model requires
a very accurate model tuned to a specific environment and
tends to result in a lower localization accuracy than the
fingerprinting method [17]. Therefore, we have chosen to use
the WiFi fingerprinting method. WiFi fingerprinting has also
been studied for outdoor localization, in particular in urban
canyons. Due to the impact of pedestrian and car traffic, the
accuracy drops significantly in outdoor environments [18].
The process of WiFi fingerprinting can be very tedious,
so [19] presents an autonomous mobile robot approach for
indoor localization where Simultaneous Localization and
Mapping (SLAM) is used to create and update the positions
in the WiFi fingerprint database for geo-locating people.
Visual localization through SLAM has also been studied
extensively - [20] presents a survey of SLAM for urban
ground vehicles.

WiFi fingerprinting based localization consists of two
phases: offline and online. In the offline phase, a collection
of fingerprints is taken at unique locations and stored in
a database. A fingerprint is comprised of each surrounding
AP’s BSSID and RSSI. In our work, the fingerprint database
was constructed in the following way. We have chosen to use
a spacing of 1.5m in between fingerprint locations in order
to ensure that each unique location of the robotic platform
has a corresponding fingerprint in the database, considering
that the size of the robotic platform is about 1.2m by 0.8m.
To increase the accuracy of WiFi fingerprinting, [16] states
that a reading in each orientation at every location must be
taken. However, in an oil and gas facility, we can assume
that the robot will never drive perpendicular to a path, so

we have only taken fingerprints in two orientations along
defined paths and then four orientations at corners. WiFi
signal propagation becomes very unstable at larger distances
in terms of the reliability of the RSSI as determined from
our experiments. To address this, we have chosen to only
include APs whose RSSI is greater than -70 dbm.

In the online phase, the fingerprint database is used to de-
termine location of the robot by finding the best matching of
current visible APs along with their RSSI. More specifically,
the robot polls the surrounding WiFi APs in order to create
its current fingerprint, only considering APs with an RSSI
better than -70 dbm. These values are then compared to the
fingerprint database using the averaged Euclidean distance
in signal space (3).

d(Z,Zi) =
1

N
×

√√√√ N∑
j=1

(RSSIj(x, y)−RSSIj(xi, yi))2,

(3)
where Z is the fingerprint currently observed by the robot
composed of L APs at an unknown position (x, y), and
Zi is the fingerprint from the database for position (xi, yi)
composed of M APs. N is the total number of APs in Z∪Zi.
RSSj(xi, yi) is the mean RSSI value of location (xi, yi) for
AP “j”. Our approach is modified from [17], where the entire
set (Z ∪ Zi) is considered when determining the Euclidean
distance in signal space instead of only using the APs in
Z, which allows for a more accurate fingerprint match as
Z might be a subset of numerous Zis. If an AP exists only
in one list, its value is compared against the cut-off value
of -70 dbm. The averages of the number of comparisons
between the current fingerprint and the database fingerprints
are sorted in non-decreasing order. The K closest neighbors’
locations are then averaged to determine the location of the
robot.

We deployed the system at the Petroleum Institute in Abu
Dhabi, UAE. The robot drove through a 12 m by 46 m
rectangular path on the third floor of Ruwais Building - a
sheetrock academic building. This test was performed over
two days. In order to determine the ground truth location
of the robot, physical markers were manually placed at the
robot’s location every 5 seconds. Fig. 6 shows the resulting
absolute position error for each location across the 7 cycles.
We achieved an average accuracy of 2.30 m across 7 loops
(cycles) with remote control of the robot. Due to a mismatch
in fingerprinting, some locations (e.g., Location 3), have
a high position error. The error in location 8 is due to a
physical change in environment during testing, i.e.: cabinets
from classrooms were moved into the hallway in between
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the offline and online phases.
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Fig. 6. Absolute position estimation error using WiFi fingerprinting
methods across 7 cycles

WiFi was never intended to be the only source of localiza-
tion, instead it should be fused with other localization sensors
available on the robot. We have implemented an Extended
Kalman Filter to fuse results from the Inertial Navigation
System (INS), compass, GPS, WiFi, and a fiducial marker
system. A validation gate is applied to each localization
sensor to help reject outlier measurements. For a detailed
explanation of this implementation, interested readers may
refer to [21].

Table II shows the results of fusing different sets of
localization sensors. By fusing INS with the WiFi, we were
able to achieve an absolute position error of 1.02 m using
a WiFi validation gate value of 0.5. Accuracy was further
increased by fusing INS, WiFi, and the fiducial marker
system (discussed in [21]) to achieve an absolute position
error of 0.43 m using a WiFi validation gate value of 0.1 for
WiFi.

TABLE II
INDOOR LOCALIZATION RESULTS

Localization
Method

WiFi
Only

INS
Only

INS+
WiFi

INS+
WiFi+

Fiducial
Mean

Error (m) 2.30 2.88 1.02 0.43

V. CONCLUSIONS

For a robotic system to autonomously navigate in an
oil and gas refinery, it must be able to communicate with
the control room and also localize itself. In this work
we define the kinds of communication required to deploy
an autonomous robot. We study WiFi signal propagation
characteristics and apply the findings to determine WiFi

AP placement. We also assign channels to interfering APs.
WiFi fingerprinting based localization was implemented that
achieves a reasonable accuracy when used alone and achieves
desired accuracy (less than 1m) when combined with INS
and fiducial marker based approach.
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